Bond energies in diatomic molecules

Homonuclear

Homonuclear			
Bond	Energy/kJ mol ⁻¹		
н—н	436		
D—D	442		
N≡N	944		
O=O	496		
F—F	158		
Cl—Cl	244		
Br—Br	193		
I—I	151		

Bond energies in polyatomic molecules Homonuclear

Bond	Energy/kJ mol ⁻¹
c-c	350
C=C	610
C≡C	840
C C (benzene)	520
N—N	160
N=N	410
0-0	150
Si—Si	222
P—P	200
s—s	264

Heteronuclear

neteronuclear			
Bond	Energy/kJ mol ⁻¹		
C—H	410		
C—F	485		
C—C1	340		
C—Br	280		
C—I	240		
C—N	305		
C=N	610		
C≡N	890		
C-0	360		
C=O	740		
C=O in CO ₂	805		
N—H	390		
N—C1	310		
0—Н	460		
Si—Cl	359		
Si—H	320		
Si—O (in SiO ₂ (s))	460		
Si=O (in SiO ₂ (g))	640		
Р—Н	320		
P—CI	330		
P-0	340		
P=O	540		
S—H	347		
S—CI	250		
S-0	360		
S=0	500		

Heteronuclear

Bond	Energy/kJ mol⁻¹
H—F	562
H—C1	431
H—Br	366
H—I	299
C≡O	1077

E[⊕] in decreasing order of oxidising power

Electro	de re	eaction	E [⊕] / V
F ₂ + 2e ⁻	=	2F"	+2.87
S ₂ O ₈ ²⁻ + 2e ⁻	=	25042-	+2.01
H ₂ O ₂ + 2H* + 2e*	_	2H ₂ O	+1.77
MnO ₄ " + 8H" + 5e"	=	Mn ²⁺ + 4H ₂ O	+1.52
PbO ₂ + 4H [*] + 2e ⁻	=	Pb ²⁺ + 2H ₂ O	+1.47
C12 + 2e	=	201	+1.36
Cr ₂ O ₇ ²⁻ + 14H* + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+1.33
O ₂ + 4H [*] + 4e ⁻	=	2H₂O	+1.23
Br ₂ + 2e ⁻	=	2Br ⁻	+1.07
NO ₃ ⁻ + 10H* + 8e ⁻	=	NH ₄ * + 3H ₂ O	+0.87
C NOT + H₂O + 2eT	=	C1" + 20H"	+0.81
NO ₃ " + 2H" + e"	=	NO ₂ + H ₂ O	+0.81
Ag* + e*	=	Ag	+0.80
Fe ³⁺ + e ⁻	=	Fe ^{2*}	+0.77
I ₂ + 2e ⁻	=	21	+0.54
O ₂ + 2H ₂ O + 4e ⁻	=	40H	+0.40
Cu ²⁺ + 2e ⁻	=	Cu	+0.34
SO ₄ ²⁻ + 4H* + 2e ⁻	=	SO ₂ + 2H ₂ O	+0.17
Sn ^{4*} + 2e ⁻	=	Sn ^{2*}	+0.15
S ₄ O ₆ ²⁻ + 2e ⁻	=	2S ₂ O ₃ ²⁻	+0.09
2H* + 2e-	=	H ₂	0.00
Pb ²⁺ + 2e ⁻	=	Pb	-0.13
Sn²+ + 2e⁻	=	Sn	-0.14
Electro	de re	eaction	E ^o /V
O ₂ + H ₂ O + 2e ⁻	=	HO ₂ "+ OH"	-0.08
2H ₂ O + 2e ⁻		H ₂ + 20H ⁻	-0.83
Pb ²⁺ + 2e ⁻		Pb	-0.13
Pb ⁴⁺ + 2e ⁻	=	Pb ^{2*}	+1.69
PbO ₂ + 4H* + 2e*			+1.47
SO ₄ 2" + 4H* + 2e"	=	$-/+\cdot\cdot/-$	+0.17
S ₂ O ₆ ²⁻ + 2e ⁻	=	2804	+2.01
S ₄ O ₆ ²⁻ + 2e ⁻			+0.09
Sn2* + 2e		Sn	-0.14
Sn ^{4*} + 2e ⁻		Sn ^{2*}	+0.15
V ^{2*} + 2e ⁻	=	V	-1.20
√3° + e⁻	=	V ^{2*}	-0.26
VO ^{2*} + 2H* + e	=	V3* + H2O	+0.34
VO2* + 2H* + e*		VO ^{2*} + H ₂ O	+1.00
VO ₃ "+4H"+e"		VO ^{2*} + 2H ₂ O	+1.00
Zn ²⁺ + 2e ⁻	=	Zn	-0.76

All ionic states refer to aqueous ions but other state symbols have been omitted

E[⊕] In Alphabetical order

Electro	de re	action	E [⊕] /V
Ag* + e	#	Ag	+0.80
Al ³⁺ + 3e ⁻	=	Al	-1.66
Ba ²⁺ + 2e ⁻	=	Ва	-2.90
Br ₂ + 2e ⁻	=	2Br¯	+1.07
Ca ²⁺ + 2e ⁻	=	Ca	-2.87
C12 + 2e ⁻	=	2C1 ⁻	+1.36
2HOC1+2H*+2e	=	C1 ₂ + 2H ₂ O	+1.64
C10" + H ₂ O + 2e"			+0.81
Co ²⁺ + 2e ⁻			-0.28
Co3+ + e-	=	Co ²⁺	+1.89
[Co(NH ₃) ₆] ^{2*} + 2e ⁻		Co + 6NH ₃	-0.43
Cr2* + 2e ⁻	=	Cr	-0.91
Cr3* + 3e ⁻	=	Cr	-0.74
Cr ³ * + e ⁻			
			-0.41
Cr ₂ O ₇ ²⁻ +14H*+6e ⁻			+1.33
Cu* + e*			+0.52
Cu ²⁺ + 2e ⁻	=	Cu	+0.34
	+	Cu*	+0.15
[Cu(NH ₃) ₄] ^{2*} + 2e ⁻	=	Cu + 4NH ₃	-0.05
F ₂ + 2e ⁻	#	2F ⁻	+2.87
Fe ^{2*} + 2e ⁻	=	Fe	-0.44
Fe ^{3*} + 3e ⁻	=	Fe	-0.04
Fe ³⁺ + e ⁻	=	Fe ^{2*}	+0.77
[Fe(CN) ₆] ³⁻ + e ⁻	=	[Fe(CN) ₆] ⁴⁻	+0.36
Fe(OH) ₃ + e ⁻	=	Fe(OH) ₂ + OH ⁻	-0.56
2H* + 2e*	=	H ₂	0.00
I ₂ + 2e	=	21	+0.54
K* + e*	=	K	-2.92
Li" + e"	-	Li	-3.04
Mg ²⁺ + 2e ⁻	1 1	Mn	-2.38
Mn³ + 2e	=	Mn ² *	-1.18 +1.54
MnO ₂ + 4H* + 2e ⁻			+1.54
MnO ₄ " + e"		MnO ₄ ²⁻	+0.56
MnO ₄ "+ 4H" + 3e"	=	MnO ₂ + 2H ₂ O	+1.67
MnO ₄ "+8H" + 5e"	=	Mn ²⁺ + 4H ₂ O	+1.52
NO ₃ " + 2H" + e"	=	NO ₂ + H ₂ O	+0.81
NO ₃ "+3H" + 2e"	=	HNO ₂ + H ₂ O	+0.94
NO ₃ "+ 10H" + 8e"	=	NH4* + 3H2O	+0.87
Na* + e*	=	Na	-2.71
Ni ^{2*} + 2e ⁻	=	Ni	-0.25
[Ni(NH ₃) ₆] ^{2*} + 2e ⁻	=	Ni + 6NH ₃	-0.51
H ₂ O ₂ + 2H [*] + 2e ⁻	=	2H ₂ O	+1.77
HO ₂ " + H ₂ O + 2e"	=	30H"	+0.88
O ₂ + 4H* + 4e*	=	2H ₂ O	+1.23
O ₂ + 2H ₂ O + 4e ⁻	=	40H ⁻	+0.40
O ₂ + 2H" + 2e"	=	H ₂ O ₂	+0.68

The orientating effect of groups in aromatic substitution reactions

The position of the incoming group, E, is determined by the nature of the group, G, already bonded to the ring, and not by the nature of the incoming group E.

G	-alkyl -OH or -OR -NH ₂ , -NHR or -NR ₂ -NHCOR	−C <i>l</i> , −Br, −I	-CHO, -COR -CO ₂ H, -CO ₂ R -NH ₃ ⁺ -NO ₂ , -CN
Reactivity of ring (compared to benzene)	Activated	Deactivated	Deactivated
Position of E (relative to position of G)	2- and/or 4-	2- and/or 4-	3-